
Go T o S t a t e m e n t C o n s i d e r e d H a r m f u l

Key Words and Phrases: go to statement, jump instruction,
branch instruction, conditional clause, alternative clause, repet-
itive clause, program intelligibility, program sequencing

CR Categories: 4.22, 5.23, 5.24

EDITOR :

For a number of years I have been familiar with the observation
that the quality of programmers is a decreasing function of the
density of go to statements in the programs they produce. More
recently I discovered why the use of the go to statement has such
disastrous effects, and I became convinced that the go to state-
ment should be abolished from all "higher level" programming
languages (i.e. everything except, perhaps, plain machine Code).
At'that time I did not attach too much importance to this dis-
covery; I now submit my considerations for publication because
in very recent discussions in which the subject turned up, I have
been urged to do so.

My first remark is that, although the programmer's activity
ends when he has constructed a correct program, the process
taking place under control of his program is the true subject
matter of his activity, for it is this process that has to accomplish
the desired effect; it is this process that in its dynamic behavior
has to satisfy the desired specifications. Yet, once the program has
been made, the "making" of the corresponding process is dele-
gated to the machine.

My second remark is that our intellectual powers are rather
geared to master static relations and that our powers to visualize
processes evolving in time are relatively poorly developed. For
that reason we should do (as wise programmers aware of our
limitations) our utmost to shorten the conceptual gap between
the static program and the dynamic process, to make the cor-
respondence between the program (spread out in text space) and
the process (spread out in time) as trivial as possible.

Let us now consider how we can characterize the progress of a
process. (You may think about this question in a very concrete
manner: suppose that a process, considered as a time succession
of actions, is stopped after an arbitrary action, what data do we
have to fix in order that we can redo the process until the very
same point?) If the program text is a pure concatenation of, say,
assignment statements (for the purpose of this discussion regarded
as the descriptions of single actions) it is sufficient to point in the
program text to a point between two successive action descrip-
tions. (In the absence of go to statements I can permit myself the
syntactic ambiguity in the last three words of the previous sen-
tence: if we parse them as "successive (action descriptions)" we
mean successive in text space; if we parse as "(successive action)
descriptions" we mean successive in time.) Let us call such a
pointer to a suitable place in the text a "textual index."

When we include conditional clauses (if B then A), alternative
clauses (if B then AZ else A2), choice clauses as introduced by
C. A. R. Hoare (case[i] of(At, A2, ... , An)), or conditional expres-
sions as introduced by J. McCarthy (Bi -~ El, B2 --~ E2, ... ,
Bn ---~ En), the fact remains that the progress of the process re-
mains characterized by a single textual index.

As soon as we include in our language procedures we must admit
that a single textual index is no longer sufficient. In the case that
a textual index points to the interior of a procedure body the

dynamic progress is only characterized when we also give to which
call of the procedure we refer. With the inclusion of procedures
we can characterize the progress of the process via a sequence of
textual indices, the length of this sequence being equal to the
dynamic depth of procedure calling.

Let us now consider repetition clauses (like, while B repeat A
or repeat A until B). Logically speaking, such clauses are now
superfluous, because we can express repetition with the aid of
recursive procedures. For reasons of realism I don't wish to ex-
clude them: on the one hand, repetition clauses can be imple-
mented quite comfortably with present day finite equipment; on
the other hand, the reasoning pattern known as "induction"
makes us well equipped to retain our intellectual grasp on the
processes generated by repetition clauses. With the inclusion of
the repetition clauses textual indices are no longer sufficient to
describe the dynamic progress of the process. With each entry into
a repetition clause, however , we can associate a so-called "dy-
namic index," inexorably counting the ordinal number of the
corresponding current repetition. As repetition clauses (just as
procedure calls) may be applied nestedly, we find that now the
progress of the process Can always be uniquely characterized by a
(mixed) sequence of textual and/or dynamic indices.

The main point is that the values of these indices are outside
programmer's control; they are generated (either by the write-up
of his program or by the dynamic evolution of the process) whether
he wishes or not. They provide independent coordinates in which
to describe the progress of the process.

Why do we need such independent coordinates? The reason
is--and this seems to be inherent to sequentiM processes--that
we can interpret the value of a variable only with respect to the
progress of the process. If we wish to count the number, n say, of
people in an initially empty room, we can achieve this by increas-
ing n by one whenever we see Someone entering the room. In the
in-between moment that we have observed someone entering the
room but have not yet performed the subsequent increase of n,
its value equals the number of people in the room minus one!

The unbridled use of the go to statement has an immediate
consequence that it becomes terribly hard to find a meaningful set
of coordinates in which to describe the process progress. Usually,
people take into account as well the values of some well chosen
variables, but this is out of the question because it is relative to
the progress that the meaning of these values is to be understood l
With the go to statement one can, of course, still describe the
progress uniquely by a counter counting the number of actions
performed since program start (viz. a kind of normalized clock).
The difficulty is that such a coordinate, although unique, is utterly
unhelpful. In such a coordinate system it becomes an extremely
complicated affair to define all those points of progress where,
say, n equals the number of persons in the room minus onet

The go to statement as it stands is just too primitive; i t is too
much an invitation to make a mess of one's program. One can
regard and appreciate the clauses considered as bridling its use. I
do not claim that the clauses mentioned are exhaustive in the sense
tha t /hey will satisfy all needs, but whatever clauses are suggested
(e.g. abortion clauses) they should satisfy the requirement that a
programmer independent coordinate system can be maintained to
describe the process in a helpful and manageable way.

I t is hard to end this with a fair acknowledgment. Am I to

Volume 11 / Number 3 / March, 1968 Communieations of the ACM I47

judge by whom my thinking has been influenced? It is fairly
obvious that I am not uninfluenced by Peter Landh~ a~d Chris~
topher Strachey. Finally I s~muld like to record (as I remember i~
quite distinctly)how Heinz Zema:~ek a~ the pre-A~c~-oL meeting
in early !959 in Copenhagen quite explicitly expressed his doubts
whether the go to statement should be treated on equM syntactic
footing with the ~s ignment statement. Tn a modest extent t
blame myself for not having then drawn ~he eor~sequenees of his
remark.

The remark about the undesirability of the go to statement is
far from new. I remember having read the explicit recoam~enda*
~[on ~o restrict the use of the go to statement to alarm exits, but
I have not been able to trace it; presumably, it has been made by
C. A. R. Hoare. In {t, See. 3.Z1.] Wirth and Hoare together
make a remark in the same direetion in motivating the case
eonstruetion: "Like the conditional, it mirrors die dynamic
structure of a program more eleaHy than go to statements a~d
switches, sad it eliminates the need for introducing a large number
of labels i~ the program."

In !2] Guiseppe aaeopini seems to have proved the (togieM)
superfluousness of the go to statement. The exercise to translate
an arbitrary flow diagram more or tess meehanicMty into a jmnp-
less one, however, is not to be recommended. The~ the resulting
flow diagram cannot be expected to be more transparent than the
originM one.

}'~g FNRE NCES :
1. WIaT~L N~KL.-~'S~ Axe> }{O.~a~, C A. R A contribution to the

developmen~ of ALGOL. ('cram. A(\~.[9 (June 19~i), 413-432.
2. B{JIH)d~ CORNADO, .aN[)J-kkCOP[N[, GUqSEPeE,. Flow diagrams,

Turing macNnes and languages with only two formation
>ties, Commo ACM ,9 (May lg@}), 3(~->-371.

EDSGER Wo I)UKSTRA
Technogogicag University
Eindhoven, The NegheHa~ds

l a n g u a g e P r o t e c t i o n b y T r a d e m a r k I l l - a d v i s e d

Key Words and Phrsaes: TRAC languages, procedure-oriented
language, proprietary software, protection of software, trade~
marks, copyright protection,patent protection, standardization,
lice~sing, Mooers doctrb~e

C[~' Categories: 212, 2.2, 4.0, 42

}:n~Toa :
I would like to comment on a policy published 25 August 1967

by the Rockford Research Insti tute Inc., for trademark control
of ~he T}~Ac language "originated by Calvin N. Mooers of that
eorp,ratio>.": "I~ is ~.he belief at Rockford t~meareh that an
aggresaive cour:~e of action can and should be taker~ to protect the
i~tegrity of its carefully desig~ed targuages." Mr. Mooers believes
that "well-drawn standards are not enough to prevent irrespon.-
sib~e deviatio~v~ in computer ta~guages," and that. there%re
"Rnekford Research shall insist ~ha~. all software and supporting
services for its T:r{.~e languages arid related services be furnished
for a price by Rockford~ or by sources licensed and authorized by
Rockford in a cow, tract ar rangement" Mooers' policy, which
applies in academic hastitutions ~s well as commercial ~sem,
includes ":authorized use of the algorithm and prbnitives of a
specific T-~ae language; authorization for experimentatior~ with
the language , 2'

I ~hir~k that ~his attempt ~o protect a ia~guage a~d its software
by eoatrotlb~g ffhe name is very ill-advised. Orm is remi~ded of
the C o ~ r tz, ngaage, whose develo~:~r~ (under V. Yngve) reetrieted

its sourcedevel distribution. As a result, that efforl5 was bypassed
by the people at Bell Laboratories who developed Srvonou This
latter Ianguage and its software were iacvitM)ly superior, and
were immediately available to every~me, b~eluding the right to
make exte~sio~s. Later versions benefitted from "meritorious
extra,siena" by "irrepressible young people" at universities, with
the result that Sxo~o~, today is an important and prominent
language, while Coast enjoys relative obscurity.

Mr. Mooers will find that; new Ta~cdike languages will appear
whose documentatimb because of the trademark restriction, can.
not mention Tm~c. Textbook references will be similarly inhibited.
It is unfortunate.

B~:RNaeD A. G a L ~
UaiversiQl of Michigag
Ann Arbor, Mich. 4810~

Mr. Manet's Reply

EDITOR: I~
Professor GMter's let.tar, commenting ca our Rockford Research sl

policy statement on software protection of 25 August 1967, opens t~
the discussion of what may be a very significant developmeat to p
our computing profession. This policy statement applies to our
TIRAC CFM) computer-controlling languages. The statement in.
eludes a new doctrine of software protection which may be gen. tl
erally applicable to a variety of different kinds of complex corn- i~
purer systems, computer services, languages, and software, a
Already it is evident that this doctrine has a number of interesting
legal and commercial implications. It is accordingly appropriate d
that it be subiect to critical discussion.

The doctrine is very simple. For speeifieity, I shall describe it
in regard to the Tm~c languages which we have developed: (1)
Rockford Research has designated itself as the sole authority for
the development and publication of authentic standards and
specifications for our TRAC languages; and (2) we have adopted
Taac as our commercial trademark (and service mark) for use in
connection with our eoraputer-eontrolling languages, our publica-
tions providing standards for the languages and any other related
goods or services, i

The power of this doctrine derives from the unique manner in
whieh :it serves the interests of the consuming public--the people K
who wilt be using computer services. The visible and recognized
Te.~c trademark informs this public--the engineers, the soeiol0gy
professors, the business systems people, and the nonprogrammers
everywhere--that the language or computer capability identified I!
by this trademark adheres authentieMly and exactly to a carefully * !i
drawn Rockford Research standard for one of our TR:~c languages 'i
or some related service. This is in accord with a long commercial ~t
and legal tradition.

The evils of the present situation and the need to find a suitable ~l
remedy are well known. An adequate basis for proprietary soft- ~
ware development and marketing is urgently needed, particularly
in view of the doubdul capabilities of copyright, patent, or "trade
secret" methods when applied to software. Developers of vMuable
systems--including languages-~-deserve to have some vehicle to
give them a return. On the user side the nonexistence of standards
in the computer systems area is a continuing nuisance. The
proliferation of dialects ou wduabte languages (e.g. SNOR0~ or
f' O~Tr~ ~.X) iS sheer madness. The layman user (read "nonprogram"
mer") who now has access to any of several dozen computer
facilities (each with incompatible systems and diMects) needs
relief. It is my opinion that this new doctrirm of autonomous
sta~dardizativm eoupled with resort to eontmereiat trademark can
provide a substangiM contribution to remedying a variety of our
problems ia this area.

Several points of Professor Galter's tatter deserve specific
comment Ih::, full impact of our Rockford Research policy (and

t 4 8 C o m m u n i e a t l o ~ s ~)f the ACid| Vo lume 11 / N u m b e r 3 / March, 1698

